An Efficient P300-based BCI Using Wavelet Features and IBPSO-based Channel Selection

نویسندگان

  • Bahram Perseh
  • Ahmad R. Sharafat
چکیده

We present a novel and efficient scheme that selects a minimal set of effective features and channels for detecting the P300 component of the event-related potential in the brain-computer interface (BCI) paradigm. For obtaining a minimal set of effective features, we take the truncated coefficients of discrete Daubechies 4 wavelet, and for selecting the effective electroencephalogram channels, we utilize an improved binary particle swarm optimization algorithm together with the Bhattacharyya criterion. We tested our proposed scheme on dataset IIb of BCI competition 2005 and achieved 97.5% and 74.5% accuracy in 15 and 5 trials, respectively, using a simple classification algorithm based on Bayesian linear discriminant analysis. We also tested our proposed scheme on Hoffmann's dataset for eight subjects, and achieved similar results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of a 2-DoF robotic arm using a P300-based brain-computer interface

In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...

متن کامل

به‌کارگیری تحلیل زمان‌- فرکانس و ماشین‌ همیار درتشخیص خودکار مؤلّفه‌ی P300 جهت ارتباط مغز با رایانه

Abstract: In this study we propose a new approach to analyze data from the P300 speller paradigm using the quadratic B-Spline wavelet coefficients in comparing to time and frequency features sets on the event related potentials. Data set II from the BCI competition 2005 was used. Mode frequency, Mean frequency, Median frequency and some morphologic parameters ware extracted as features. Three m...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

Analysis of Extracting Distinct Functional Components of P300 using Wavelet Transform

This paper investigates P300 features extracted through wavelet transform for BCI systems. Feature extraction is one of the key issues of signal processing for P300 based brain-computer interface systems (BCI). This paper examines and highlights the significance of using wavelets in P300 based BCI systems. We also mention various methods of feature extraction from P300 signals. The analysis sug...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012